RECEIPT OF COURSE SYLLABUS

Printed Name ___ Student ID Number ___________________________________

Recitation Section Number ___________________________________

By signing this page I acknowledge that I have read and understood the attached syllabus and course calendar for TDEC 120, Winter term 2003. I understand the course schedule and the policy regarding the final exam.

Signature: __ Date: ___________________________________

This receipt must be submitted to your recitation teacher during recitation any time prior to 5:00 PM, Jan 21, 2003 in order to receive recitation credit for WEEK 1
Objectives for TDEC 120-121

• to understand the concept of the atomic and molecular nature of matter and of the chemical reactions which transform matter from one substance to another;

• to develop problem-solving skills in the quantitative areas of chemistry such as stoichiometry or mass balance, thermochemistry, properties of gases, chemical equilibria, and the rates of chemical reactions;

• to be introduced to the elementary experimental chemistry;

• to learn the basis of the physical properties and structure of solids, liquids, and gases to understand the factors affecting their chemical reactivity;

• to develop a broad understanding of chemistry so during the course of a career as an engineer you will recognize when chemical effects are important to consider;

• to gain sufficient knowledge of chemistry so that chemical aspects of engineering problems can be conveyed accurately to other technical professionals;

Lecturers: Section A, Stratton 113, M & W 10:00-10:50 PM, Dr. C. Rosenthal, Chemistry Department (carey.rosenthal@Drexel.edu), Office: 405 Disque Hall.

Required Textbooks and Manuals:

Required Laboratory Manual:

Required Supplementary Materials

• Each student may purchase an OWL account either as part of their textbook bundle or separately from the bookstore. OWL accounts can not be shared.

• Safety glasses or goggles must be worn in the laboratory (available at the bookstore)

The bookstore sells a laminated chemistry “quick study” guide for about $4. This document contains a periodic table and additional review information. They also sell laminated periodic tables for about $3. Either of these items can be useful while studying and while using Owl. NOTE: neither of these items, similar ones, or any other information or fact sheets will be allowed for use during the quizzes or examinations, “tests.” Periodic tables, and other useful information will be provided as part of your test package at the time of the test.

Academic Honesty / Cheating: Students are held to the highest expectations and standards regarding honesty in taking exams and quizzes and in the preparation of laboratory reports.

Cheating will not be tolerated. All cases of cheating will be reported to the University and the Engineering College. Students caught cheating will have their paper taken away, will receive a failing (F) grade and a record will be added to their student file.

Table 1. Grading policy

<table>
<thead>
<tr>
<th>Component</th>
<th>Percent of Overall Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes & Recitation</td>
<td>30</td>
</tr>
</tbody>
</table>

Three 50 minute quizzes will be given in on Fridays starting at 8:30 AM on dates indicated on the course schedule.

A recitation grade will be determined based on attendance and
The receipt for this syllabus will be counted as credit for recitation for WEEK 1.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative</td>
<td>20</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td></td>
</tr>
<tr>
<td>Cumulative</td>
<td>30</td>
</tr>
<tr>
<td>Final Exam</td>
<td></td>
</tr>
<tr>
<td>Labs</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Lectures: Lectures will be given on topics as indicated by the course schedule. Lecturers may call upon students to provide feedback from time to time, but attendance is not mandatory. There are several Review / catch-up days scheduled prior to each quiz or exam. A review will be provided if the lecturer feels sufficient attention has been given to the subject matter otherwise this day may be used to discuss new material. *Not all required material will be covered in lecture.* The course schedule is provided as a guide and will be revised if dictated by prevailing circumstances (e.g. weather, pedagogical purposes...)

Examinations: There are midterm and final examinations. The exam dates, locations and start time will be announced in class and posted on the course website. *NO MAKE UP WILL BE GIVEN FOR THESE EXAMS.* After the commencement of the exam, no student will be allowed to leave the examination room with out handing in their exam. Once a student leaves the testing room they will not be allowed to reenter it for any reason. Students arriving late to the exam, after any student other has left, will not be permitted to take the quiz. The quizzes will consist of multiple choice questions. Credit is given for correct answers. All students are responsible for bringing to the quiz their own operational writing instruments and calculators - no sharing will be allowed. Periodic tables, constant values, etc. will be provided. No other materials will be allowed.

The recitation grade will be based on the **Recitation Classes:** There is a 50 minute recitation every week, designed to give you experience in explaining and working problems. Recitation instructors are prepared to answer any question in this chemistry course, but priority will be given to those on the current subject matter. The problem assignments are listed below for each week.

Laboratories: The purpose of the laboratory is to augment the course material. Subject matter not covered in the lecture part of the course will be covered in the lab. The major objective of the lab part of the course is for you to obtain training in the chemical laboratory and the experimental technique and the record and reporting of experimental results. You will have a chemistry lab every other week beginning in week 2 for even-numbered lab sections or week 3 for odd-numbered lab sections (please refer to the table below). All laboratory instruction is given in Disque 12-313. You are required to complete a pre-laboratory quiz prior to each experiment. This quiz is to be done as a homework assignment and handed in at the beginning of the lab period. You will not be permitted to start the experiment until the pre-lab quiz has been handed in. The Pre-Lab Quiz will account for 20% of the grade exam will cover the entire term. A student who does not score at least 50% of the points on the final exam will not pass the course regardless of their prior performance in the course.

Quizzes: Three, fifty (50) minute quizzes will be given as indicated on the course schedule. Dates, times and locations will of these quizzes be posted on the course website. *NO MAKE UP QUIZES WILL BE GIVEN.* After the commencement of the quiz, no student will be allowed to leave the testing room with out handing in their quiz. Once a student leaves the testing room they will not be allowed to reenter it for any reason. Students arriving late to the quiz, after any student other has left, will not be permitted to take the quiz. The quizzes will consist of multiple choice questions. Credit is given for correct answers. All students are responsible for bringing to the quiz their own operational writing instruments and calculators - no sharing will be allowed. Special note regarding the FINAL EXAM. The final
given for your lab report. The data sheet from the labs must be signed by your instructor prior to leaving the lab. The data sheets may be photocopied and shared (with your lab partner only). Every student is required to hand in an individual lab report. See page 2 of the Lab Manual for more details.

Table 2. Laboratory Schedule

<table>
<thead>
<tr>
<th>Lab 1</th>
<th>Lab 2,</th>
<th>Lab 3</th>
<th>Lab 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Exp. #3, Stoichiometry and Limiting Reagents</td>
<td>Exp. #2, A survey of Chemical Reactions</td>
<td>Exp. #4, Spectroscopy</td>
</tr>
<tr>
<td>Even Lab Sect.</td>
<td>Week of Jan 13</td>
<td>Week of Jan 27</td>
<td>Week of Feb 10</td>
</tr>
<tr>
<td>Odd Lab Sect.</td>
<td>Week of Jan 20</td>
<td>Week of Feb 3</td>
<td>Week of Feb 17</td>
</tr>
</tbody>
</table>

Laboratories (continued): If you miss a lab, try to make-up the lab in one of the other sections. If that is not possible, a makeup day will be scheduled during the last week of classes.

Safety in the lab: Everyone is required to wear safety glasses or goggles while in the lab. Prescription glasses must be covered with safety goggles unless written documentation is provided to the instructor that indicates that their lenses meet or exceed ANSI Z87.1-1989 standard and are equipped with side shields. All students must sign a form stating that you understand and will abide by this policy prior to being allowed to work in the lab. It is recommended that a pair of safety glasses are purchased from the Drexel Bookstore prior to coming to the lab.

GENERAL INFORMATION

Why Should a Student of Engineering Master Chemistry?

Chemistry is the science of matter, its composition, structure, properties, and transformations. It provides the engineer with an atomic- or molecular-level understanding of matter. As engineers, you will design, produce, or maintain objects or systems that utilize, transform or manipulate matter. Knowledge of chemistry enables the engineer to understand the behavior of these systems at a deeper, often critical, level. Chemistry provides the basics for more advanced courses in thermodynamics, materials, electronics, chemical kinetics, environmental engineering, and many others.

Chemistry is central to all life processes. Every living thing is governed by the principles of chemistry for energy, locomotion, thinking, sensation, reproduction, communication, etc. Virtually all industry is dependent upon chemical products or chemical processes. For example, the technology of new electronic and electro-optic materials relies on basic advancements in solid-state chemistry. In the area of new materials and manufacturing, products such as bulk chemicals, polymers, fuels and lubricants, plastics components for automobiles, ceramics for engines, new coatings, food packaging, and architectural structural and decorative materials, road surfaces, housing materials all involve chemical technologies. It is impossible to say if these particular technologies will be the critical ones thirty years from now, when you will still be very active in your careers. Nevertheless, engineering will still involve the design and manufacture of systems made of matter, and the structure, properties, and transformations of that matter will determine whether the system will work. Thus, chemistry is basic to whatever technology evolves, and to whatever engineering career you may choose to pursue.

The chemical industry is an important component of the US economy. It employs over a million workers, one of every 18 jobs in manufacturing. The chemical industry spends more money on research and development than any other industry, spending about $20 billion annually. The chemical industry is one of the few segments of the American economy that has
maintained a healthy balance-of-trade surplus during recent years. Several of Drexel's most active co-op employers are chemical and pharmaceutical firms. This is because 25% of the chemical and pharmaceutical industry in this country lies within 200 miles of Philadelphia, the region from which most of you come. You should have a good grounding in the subject that underlies this industry. You may not end up working for a chemical or pharmaceutical company, but knowledge in chemistry will allow you to identify and communicate important issues of a chemical nature to the experts who can affect a solution for you.

Concern about the environment is affecting both our economy and the decisions that informed citizens make. All environmental problems and many civil engineering problems are strongly dependent on the understanding of the behavior of the chemical component which comprise the system. Wise decisions depend on the consideration of basic chemical facts.

Engineers design objects and systems, and the process of design is central to all branches of engineering. Design strategies extend down to the molecular level. All of the easy stuff has been done and the problems that await most future engineers (you) working at the frontier involve understanding and deriving enhanced performance from the materials they use.

Aside from these arguments of relevance to the US economy and to the environment, there is another important reason why chemistry is an essential component of any engineering curriculum. Chemistry, along with the other natural sciences, provides a perspective for the educated individual and serves as a basis for incorporating knowledge of our world and of man. Technical literacy includes college-level proficiency in the natural sciences including chemistry. Perhaps the most valuable aspect of education in the sciences is learning to view scientific data objectively and to apply this objectivity of evaluation and thinking in all aspects of life. This is the premise behind the curricula of all US universities that educate engineers, and Drexel's Engineering Curriculum is no exception.

Most students entering Drexel have taken one year of chemistry, perhaps in the tenth grade, and may have forgotten much of what they studied. (In other countries, chemistry is taught for four years in grades 9-12, and students are more likely to remember what they once learned). Thus, a college-level course in chemistry is appropriate for all freshman engineering students.

How Will You Learn Chemistry in This Course?

It has been our experience in the past that to do well in this course, you must study at least two hours for every hour you spend in class (three hours is recommended). That means studying chemistry eight to twelve hours per week. Focus on successfully completing the homework assignments, but don't ignore the problems at the end of the chapter. The assignments provided should prepare the “average” student to get the average grade. Higher grades require more practice. The more you practice chemistry, for example by solving problems, the more quickly you will be able to get through the easy problems on a quiz or exam. One common difference between the “A” student and the average student is the “A” student gets through the easier problems quickly, and has more time to spend on the challenging problems.

Do not hesitate to speak with your recitation instructor or your lecturer when you are having difficulty with any of the concepts or problems covered in the course. Be aware this course
begins where your high school course left off. Your professors and teaching assistants will assume you are proficient in chemistry at the high school level. If you are not, talk to your instructors so that you can be quickly guided onto a successful track.